HERNAGINE, A NEW APORPHINE ALKALOID, AND 3-CYANO-4-METHOXYPYRIDINE FROM HERNANDIA NYMPHAEFOLIA

K. Yakushijin, S. Sugiyama, Y. Mori, H. Murata* and H. Furukawa

Faculty of Pharmacy, Meijo University, Yagoto, Tempaku, Nagoya, Japan

(Received 20 April 1979)

Key Word Index—Hernandia nymphaefolia; Hernandiaceae; aporphine alkaloids; hernagine; pyridine alkaloid; 3-cyano-4-methoxypyridine.

Several alkaloids from the bark of the plant of Hernandia species have been isolated previously [1-3]. We here report on the isolation and characterization of a new aporphine alkaloid and a pyridine alkaloid from the leaves of Hernandia nymphaefolia (Presl) Kubitzkì (Japanese name, Hasunoha-giri) collected on Iriomote Island.

Hernagine, a new alkaloid, was separated as an oil by careful Si gel column chromatography from the phenolic fraction. The ¹H NMR (100 MHz, CDCl₃, δ) spectrum of hernagine† showed 3 methoxyls at 3.49, 3.55 and 3.86, 3 aromatic protons at 6.68 (1H, s) and 6.85 (2H, s), but no methylimino protons. Treatment of hernagine with formaldehyde and NaBH₄ afforded N-methylhernagine as a yellow oil, $[\alpha]_{L}^{25} + 144^{\circ}$ (CHCl₃). The MS exhibited a M⁺ at m/e 341 and the base peak at m/e 310. The UV spectrum ($\lambda_{max}^{E:OH}$ nm (log ε): 221 (4.39), 269 (4.04), and 307 (3.73)) of N-methylhernagine was characteristic of a 1, 2, 10, 11-substituted aporphine [4]. The ¹H NMR spectrum also supported this substitution pattern [4] (NMe: δ

2.71; $3 \times OMe$: δ 3.49, 3.53 and 3.87; C-3 H: δ 6.64 (1H, s); C-8,9 H: δ 6.85 (2H, s)). Two of 3 methoxyls gave signals markedly upfield from that of the other methoxy group, and accordingly, C-1 and C-11 positions must be substituted with methoxyl groups. This leaves only two possible structures, 2 and 3 [5], for N-methylhernagine. A comparison of the ¹H NMR spectra of N-methylhernagine in DMSO- d_6 , with and without added KOH, showed an upfield shift of 0.45 and 0.59 ppm in two aryl protons at δ 6.91 (1H, d, J=8 Hz) and 6.78 (1H, d, J=8 Hz), respectively, and 0.25 ppm in another aryl proton at δ 6.85 (1H, s) [4]. Since these observations indicated that the hydroxyl group must be present at C-10, structure 1 was proposed for hernagine, and 2 for its N-methyl derivative.

We also isolated and characterized 3 aporphine alkaloids, nornantenine (8) [6], laurotetanine (9) [7] and N-methyllaurotetanine (10) [7], and an oxoaporphine alkaloid, oxonantenine (4) [6], in addition to the known aporphine alkaloids, ovigerine (5) [1-3], nandigerine (6) [2, 3] and isocorydine (7) [2] from the

* Present address: 12-cho, Ibusuki, Kagoshima, Japan.

7 $R = R^1 = R^3 = Me$, $R^2 = H$

bark of the plant of the same species.

3-Cyano-4-methoxypyridine (11), obtained from both the phenolic and non-phenolic base fractions, was crystallized from ether solution as colorless needles, mp 124°. The IR (CHCl₃) spectrum showed a nitrile group at 2230 cm⁻¹ and the UV spectrum showed

[†] Contamination with a small amount of nandigerine (6) was recognized. An efficient procedure for its separation was not devised and hernagine (1) could only be separated as its N-methyl derivative (2).

absorptions at $\lambda_{\max}^{\text{EtOH}}$ 231 and 272 nm. Its ¹H NMR (CDCl₃, δ) spectrum revealed the presence of 3 aromatic protons at 6.82 (1H, d, J = 6 Hz), 8.53 (1H, d, J = 6 Hz) and 8.56 (1H, s), and a methoxyl group at 3.94. The MS exhibited a M⁺ at m/e 134 as the base peak. Finally, the structure of this alkaloid was established by direct comparison (mmp, 1R and ¹H NMR) with synthetic 3-cyano-4-methoxypyridine (11) prepared by the method of Wieland et al. [8].

3-Cyano-4-methoxypyridine (11) has not been previously obtained from natural sources and we are investigating the biological role of this simple pyridine alkaloid.

REFERENCES

 Tomita, M., Lu, S. -T. and Chen, Y. -Y. (1969) J. Pharm. Soc. Jpn 86, 763.

- Cava, M. P., Bessho, K., Douglas, B., Markey, S., Raffauf, R. F. and Weisbach, J. A. (1966) Tetrahedron Letters 1577.
- 3. Furukawa, H., Ueda, F., Ito, M., Ito, K. Ishii, H. and Haginiwa, J. (1972) *J. Pharm. Soc. Jpn* **92**, 150.
- 4. Shamma, M. (1972) in The Isoquinoline Alkaloids, Chemistry and Pharmacology, p. 195.
- Kametani, T., Koizumi, M., Shishido, K. and Fukumoto, K. (1971) J. Chem. Soc. C 1923.
- Johns, S. R., Lamberton, J. A. and Sioumis, A. A. (1967)
 Aust. J. Chem. 20, 1457.
- 7. Tewari, S., Bhakuni, D. S. and Dhar, M. M. (1972) Phytochemistry 11, 1149.
- Wieland, T., Fest, C. and Pfleiderer, G. (1961) Ann. 642, 163.

Phytochemistry, 1980, Vol. 19, pp. 162-163. © Pergamon Press Ltd. Printed in England.

0031-9422/80/0101-0162 \$02.00/0

MAYFOLINE, A NOVEL ALKALOID FROM MAYTENUS BUXIFOLIA

HELMUT RIPPERGER

Institute for Biochemistry of Plants, Research Centre for Molecular Biology and Medicine of the Academy of Sciences of the GDR, Halle (Saale), German Democratic Republic

(Received 8 May 1979)

Key Word Index-Maytenus buxifolia; Celastraceae; spermidine alkaloid; mayfoline.

Compounds reacting with the Dragendorff reagent were detected in *Maytenus buxifolia* (A. Rich.) Griseb. (Celastraceae) [1]. Mayfoline has now been isolated from the aerial parts of the plant. Structure 1 with a characteristic hydroxylamine moiety is consistent with the spectroscopic and chemical properties of this alkaloid. Similar macrocyclic spermidine alkaloids occur in other *Maytenus* species and further Celastraceae [2, 3].

1 R = Ph, R' = H, R" = OH 2 R = Ph, R' = Ac, R" = OAc 3 R = C₆H₁₁, R' = R" = H

The IR, UV and ¹H NMR spectra indicated an aromatic partial structure; absorption at 707 cm⁻¹ corresponds to a monosubstituted benzene ring. Absorption maxima at 1663 and 1547 cm⁻¹ are in accordance with a secondary amide linkage. The empirical formula was shown to be C₁₆H₂₅N₃O₂ by high resolution MS. The base peak at m/e 274 is formed by loss of OH. The peaks at m/e 146 and 131 arise by elimination to yield a cinnamoyl derivative and subsequent cleavage of the C(4)–N(5) and N(5)–C(6) bond, respectively (see Fig. 1) [2]. The fragment at m/e 160 reveals four unsubstituted CH₂ groups between N-1 and N-9 [2]. By acetylation with Ac₂O-Py, mayfoline was converted into the N,O-diacetate (2) with absorption at 1747, 1663, 1645 and 1204 cm⁻¹ as well as ¹H NMR singlets at $\delta 2.06$ and 2.29 ppm. Like Nacetylcelacinnine [2], N-acetylcyclocelabenzene, and N-acetylisocyclocelabenzene [3], 2 shows a double doublet at δ 5.67 in the ¹H NMR spectrum for 8-H, thus indicating the partial structure N(Ac)-CH(Ph)-CH₂. The ¹H NMR spectrum of 2 lacks CHOAc